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Abstract - Hyperspectral imagery with moderate spatial
resolution (~30m) presents an interesting challenge to
feature extraction algorithm developers, as both spatial
and spectral signatures may be required to identify the
feature of interest. We describe a genetic programming
software system, called GENIE, which augments the
human scientist/analyst by evolving customized spatio-
spectral feature extraction pipelines from training data
provided via an intuitive, point-and-click interface. We
describe recent work exploring geospatial feature
extraction from hyperspectral imagery, and from a multi-
instrument fused dataset.  For hyperspectral imagery, we
demonstrate our system on NASA Earth Observer 1 (EO-
1) Hyperion  imagery, applied to agricultural crop
detection.  We present an evolved pipeline, and discuss its
operation. We also discuss work with multi-spectral
imagery (DOE/NNSA Multispectral Thermal Imager)
fused with USGS digital elevation model (DEM) data,
with the application of detecting mixed conifer forest.
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1 GENIE feature extraction technique
Los Alamos National Laboratory’s GENIE software [1-4]
is a machine learning software system using techniques
from the fields of genetic algorithms (GA) [5-7] and
genetic programming (GP) [8] to construct feature
extraction algorithms for remotely sensed imagery.  Both
the structure of the feature extraction algorithm, and the
parameters of the individual image processing steps, are
learned by the system.  GENIE has been described at
length elsewhere [1-4], so we will only present a brief
description of the system here.

GENIE follows the paradigm of genetic programming: a
population of candidate image-processing algorithms is
randomly generated from a collection of low-level image
processing operators, including texture measures, spectral
band-math operations (e.g. ratios of bands), and various
morphological filters. The fitness of each individual is
assessed from its performance on training data provided

by the human user via a graphical interface. Our fitness
metric in based on measuring the total error rate (false
positives and false negatives) on the feature extraction
task.  After a fitness value has been assigned to each
candidate algorithm in the population, the most fit
members of the population reproduce with modification
via the evolutionary operators of mutation and crossover.
This process of fitness evaluation and reproduction with
modification is iterated until the population converges, or
some desired level of classification performance is
attained, or some user-specified limit on computational
effort is reached (e.g. number of candidate algorithms
evaluated).   The final result is a grey-scale enhancement
of the feature of interest, which is then converted into a
final boolean classification using a threshold.  This final
threshold may be adjusted by the human user to take into
account the desired emphasis of the value of detection rate
(true positives) over false alarms and missed detections.

The algorithms evolved  by GENIE combine spatial and
spectral processing, and the system was in fact designed to
enable exploration of spatio-spectral image processing.
This system has been shown to be effective in detecting
complex spatio-spectral terrain features in multispectral
imagery, such as golf courses in MODIS Airborne
Simulator imagery [9], and in a range of real world
problems, including delineating and classifying wildfire
burn scars [10] and vegetation land-cover classes [11]
using a number of multispectral imagery datasets, and
detecting craters on Mars [12] using a high-resolution
panchromatic dataset (Mars Global Surveyor/Mars Orbital
Camera).  We now describe work exploring the use of this
system with two challenging types of remotely sensed
data: hyperspectral imagery and multi-instrument fused
imagery.

2 Detecting Crops with Hyperion HSI
GENIE was originally designed to evolve feature
extraction algorithms for multispectral imagery, so the
extention to hyperspectral imagery was viewed as a test of
the scalability of the technique (from 10’s to 100’s of
spectral bands). Hyperspectral imagery is often analysed
using purely spectral techniques such as the spectral angle



mapper (SAM) algorithm, or by the design of matched
filters that use the whole spectrum of each pixel (for a
general review of hyperspectral image processing, see,
e.g., the textbook treatment in [13]). GENIE’s set of
primitive image processing operators  from which it builds
its candidate algorithms are designed to work on only one
or two spectral bands of data, and so this experiment tests
the ability of the GENIE system to exploit the inherent
redundancy of HSI and identify a small number of relevant
bands out of the full hyperspectral data cube.

Our hyperspectral imagery data source is a sample scene
released by the Hyperion instrument team.  Hyperion (see,

e.g., [14] and references therein) is an experimental,
moderate-resolution (~30m/pixel), 220 band visible (~0.4
µm) to short wave infrared (~2.5 µm) hyperspectral
imager flown on the NASA New Millenium Program’s
Earth Observing 1 (EO-1) spacecraft.   The scene we used
covers part of the Coleambally Irrigation Area, an
intensively farmed agricultural region located in the state
of New South Wales, Australia (image collected 6 March,
2001).  This region produces a number of commercial
crops, including rice, corn and soy beans.  Individual
fields are large enough that even at ~30m/pixel spatial
resolution, textural cues to the nature of planted crops are
obvious (e.g., terracing of rice paddies).

Figure 1 shows our 256x256 pixel training region, which
is a small part of the full (417x752 pixel) sample scene.
This region was chosen because of the availability of
ground truth, in the form of a map of planted fields, shown
in Figure 2. For each of three crops, rice, soy, and corn, a
small amount of training data was marked up, and the
GENIE system was used to evolve a feature extraction
algorithm for that crop (training data and result for each
crop is shown in Fig. 3).  Table 1 presents our detection
and false alarm rates for the image on the training data.

Considering performance outside of the training data, on
comparing the results in Figure 3 with the ground truth in
Figure 2 we see that the algorithms evolved by GENIE
have marked out physically reasonable crop regions for
each of the crops of interest.    These agree very well with
the ground truth map of crop planting.

Figure 1. Visible (left) and Color-Infrared (right) views of the training region extracted from the Hyperion sample scene.
Rice, soy, and corn fields are present, as well as unplanted ploughed fields, natural vegetation, and roads and buildings.
At 30m spatial resolution, textural differences between crops are noticeable.

Figure 2.  Ground truth for the system of fields shown in
Fig. 1.  Labels of interest are R: Rice, C: Corn, Sy: Soy.
Proceedings of the  Hyperion Data User Workshop, 2001.



Figure 3.  GENIE training data (left column) and results (right column) for rice, soy, and corn crops
(from top to bottom).  Green pixels mark the feature of interest, and red pixels mark background
pixels.  These results compare well to the ground truth presented in Figure 2.



Table 1. GENIE result for crop detection
on the training data

Feature Detection
Rate [%]

False Alarm
Rate [%]

Rice 95.5 0.0

Soy 99.9 0.0

Corn 98.3 0.4

In the case of  Corn, fields in the south-west quadrant of
field region #36 and north-west corner of field region #37
(see Fig.2) are not detected, but on inspection of the raw
imagery (Fig.1) it is not clear that these fields have been
correctly labeled in the “ground truth” (Fig.2).  We intend
to obtain clarification on this point from the Coleambally
Irrigation Area managers.

The algorithms found by GENIE used both spatial and
spectral processing.  We will describe the soy algorithm in
a little detail, as this is representative of our other results.
Detail on all these algorithms, and comparison to other
standard algorithms, will appear in a future publication.

The soy algorithm, which appears in our genetic
programming representation as the text string (see [1,4])

[SPIKE rD175 wS1 0.34 0.85][MSAVI rD17 rD115 wS2]
[R5R5 rD217 wS3]

constructs three spatio-spectral signature bands:

• An amplitude band-pass filter (SPIKE) is applied to
spectral band 175 (1.901 µm), which passes pixels
with values in  a certain range, and sets pixels outside
of that range to zero.

• A modified  soil-adjusted vegetation index (MSAVI)
function (see, e.g.,  [13]) is applied using data bands
17 (0.519 µm) and 115 (1.296 µm).

• A local texture measure (which we call R5R5, see [4])
is applied to data band 217 (2.325 µm).

A Fisher linear discriminant supervised classifier then
finds the optimal linear combination of these bands, given
the training data, and a boolean decision threshold is
found to maximize detections and minimize false alarms.

From this, we can  see that GENIE has in this case been
able to identify a small (~1%) relevant subset of the
hyperspectral datacube, and has identified a useful mixture
of spatial (R5R5) and spectral (SPIKE, MSAVI)
processing on  those planes.  This result, and comparison

of it to the results for rice, corn, and other crops, is now of
interest for understanding  the spatio-spectral signatures of
these crops given this imagery, and for the identification
of useful subsets of the hyperspectral range of wavelengths
for. For example, a multi-spectral imager could be tuned
to exploit that feature.

3 Classifying forest with fused imagery
There are a number of previous efforts that combine
multispectral and digital elevation model (DEM) data.
Bucher and Lehmann [16] use high-resolution
multispectral data along with hyperspectral data for land
cover classification.  The DEM data are used both for
orthorectification of the multispectral data sets and for
differentiating subclasses of vegetation by height.  Zhang,
Cassells and van Genderen [17] use fused data from a
variety of sources for detection and characterization of
underground coal fires in China.  Their approach makes
use of thermal and multispectral data sources, as well as a
DEM, which was used for 3-D visualization of the image
data and for deriving depth information about the coal
fires.  Schistad Solberg, Taxt and Jain [18] explore using
Markov Random Fields for multi-source feature
extraction, in particular fusing Landsat TM, ERS-1 SAR
and GIS for land cover classification.  This last reference
also gives a good overview of the field.

The data sources used in this work are the U.S.
Department of Energy National Nuclear Security
Agency’s (DOE/NNSA) Multispectral Thermal Imager
(MTI) and U.S. Geological Survey (USGS) 1:24k DEM,
both of which have been described extensively elsewhere
[19-22].  The MTI is among many sensors that produced
data of the Los Alamos area during or shortly after the
2000 Cerro Grande/Los Alamos wild fire that devastated
~42,000 acres of forest and scrub land, and destroyed over
200 homes in the town of Los Alamos [10]. The MTI
program is now supporting ongoing restoration and
analysis work, tracking the effects of mitigation efforts and
the slow return of vegetation.  The MTI image used here
was acquired on January 13, 2002.

The topography of the region of interest is quite complex,
ranging from the ~10,000 foot peaks of the eastern wall of
the heavily forested Jemez Mountains (a dormant
volcano), to the ~7,000 foot narrow mesas and steep
canyons on which is located the town and Laboratory of
Los Alamos.  A number of our target features are naturally
linked to altitude, e.g., there is an ecological transition
region (ecotone) at approximately 8500 feet separating
medium altitude forest dominated by Ponderosa Pine,
from high altitude mixed conifer forest (which includes
Douglas Fir, White Fir, and Spruce), while the town is
located on a group of almost constant elevation mesas.
Thus, we expect interesting complementary information in
the multispectral imagery and digital elevation data sets.



Some preprocessing of the data is needed before GENIE
can make effective use of them.  The MTI instrument team
performed calibration and band-to-band registration on
their data set. No atmospheric correction is done on the
MTI data set.   We used the ENVI [23] image processing
package to coregister the MTI spectral data and the
elevation data contained in the DEM. The coregistration
accuracy was less than 3 MTI pixels (i.e., less than 60
meters).  This misregistration may be important along the
canyon edges, but since the features sought in this work
were not expected to depend on small changes in elevation
(e.g. along mesa tops and on hillsides), this accuracy was
considered sufficient to explore joint MSI/DEM
signatures.  At this point the coregistered data sets are
presented to GENIE for the feature extraction process.

We chose a set of standard land cover classes for which
ground truth existed, in the form of an official land cover
map [24] for Los Alamos National Laboratory and Los
Alamos county.  The features we chose to extract were:

• Town/Urban areas

• Wildfire burn scar

• Forest (predominantly Ponderosa Pine,
Spruce, Fir, and Aspen)

• Medium elevation Ponderosa pine forest

For each feature described above, a small amount of
training data was marked up by hand using a combination
of existing land cover maps, first-hand knowledge of the
region of interest, and photo-interpretation of the
multispectral imagery.  A more extensive mark-up of the
scene was also prepared to act as out-of-sample test data
for each feature.  Figure 4 shows the region of interest.
Each feature is then extracted, one by one, by GENIE in
separate processing runs.  Each run required
approximately 1 hour of wall-clock time on a standard
Linux/Intel workstation.  The in-sample (training) and out-
of-sample (testing) results for detection rate and false
alarm rate for each feature are shown in Table 2.

As an example of the individual results, Figure 5 shows
training and the GENIE result for Ponderosa Pine using
the fused MSI and DEM data. In each case, the qualitative
performance of the algorithm compared to the benchmark
manual land cover map is good, and gives confidence that

Figure 4. The left panel shows the part of the Jemez Mountains Northwest of the town of Los Alamos. This is a false-
color representation of an infrared slice through the Multispectral Thermal Imager (MTI) image cube (using MTI bands
O-I-D [19]).  Solar angle is such that north-facing slopes appear dark.  The right panel shows the matching DEM data,
which is co-registered and appended to the multispectral imagery to form our fused datacube.  In the DEM, brighter
pixels correspond to higher elevations.



the system is learning valid signatures as opposed to
simply over-training on the training data.

The evolved feature extractor with the poorest out-of-
sample performance was the town/urban feature extractor.
In this case, it appeared that GENIE was only given
training data for built-up areas in the town center, and
experienced difficulty when tested on urban plus suburban
areas.  This is understandable, as a large fraction of the
suburban component of Los Alamos township is
permeated by full-grown trees that fill a substantial aerial
fraction when viewed from overhead.

As a test that the system is benefiting from the inclusion of
the DEM data, we re-ran the Ponderosa Pine finder
problem with the same training data (Fig. 5), but now only
presented GENIE with the MTI multispectral imagery.
After an equivalent period of training, the performance of
the best evolved algorithm (see Table 2) was somewhat
less than that of the best algorithm evolved using MSI plus
DEM, but the performance outside the training area was
noticeably worse, with a substantial decrease in detection
rate and a substantial increase in the false alarm rate.  In

particular, the algorithm trained without access to the
DEM data confused Ponderosa Pine forest with high
altitude mixed conifer forest throughout the scene.

Table 2. GENIE results for fused MSI and DEM data.

In-sample
Performance

Out-of-sample
Performance

Feature Detection
Rate

False
Alarm
Rate

Detection
Rate

False
Alarm
Rate

Town 100% 0.16% 78.2% 0.2%

Wildfire
Burnscar

100% 0.09% 90.25% 2.2%

Forest 99.4% 0.5% 96.6% 2.3%

Ponderosa
Pine

99.9% 0.05% 94.4% 14.7%

Ponderosa
Pine

without
DEM

98.8% 3.70% 83.96% 26.8%

Figure 5. Ponderosa Pine forest feature. Left: Training data provided to GENIE.  Black pixels define non-Ponderosa
Pine forest training example pixels, and gray pixels define Ponderosa Pine forest example pixels. Right: The GENIE
result.  Ponderosa Pine forest was detected in pixels marked in white. Compared to the training data, this result achieved
a detection rate of 99.9% and a false alarm rate of 0.05%.  Outside of the training pixels, performance is qualitatively
good, based on comparison to existing, manual land cover maps.  The algorithm predominantly detects Ponderosa Pine
in the medium elevation valleys and canyons bordering on the Jemez Mountains.



4 Conclusions
We have demonstrated evolution of algorithms on
hyperspectral imagery, and on a multi-instrument data set
consisting of multispectral (visible to thermal) imagery
fused with a digital elevation model (DEM).  In seeking to
evolve algorithms to extract a range of land cover features,
including agricultural crops, town/urban, types of forest,
and wildfire burnscars, we find that the system was able to
exploit successfully these complex datasets, and produce
algorithms that perform well outside the training area.  We
also demonstrated a case where the same evolutionary
system trained to find a particular type of forest,
Ponderosa Pine, without the DEM data, had difficulty
separating the medium elevation Ponderosa Pine forest
from the high elevation mixed conifer forest.  We find
these results encouraging for future efforts of discovering
hyperspectral and multi-instrument signatures of land
cover features.

We wish to acknowledge our colleagues on the MTI
program from Los Alamos and Sandia National
Laboratories and the Savannah River Technology Center,
and our colleagues on the ISIS/GENIE team from Los
Alamos National Laboratory (LANL).  We would like to
thank Steve Koch, Leslie Hansen, and Randy Balice of
LANL’s Ecology Group for access to ground truth data
and land cover maps used to prepare our fused training
data. This work was supported by the Department of
Energy and Department of Defense.

References
[1] S. P. Brumby, J. Theiler, S.J. Perkins, N. R. Harvey,
J.J. Szymanski, J.J. Bloch, and M. Mitchell, Investigation
of feature extraction by a genetic algorithm, Proc. SPIE,
Vol. 3812, pp. 24-31,1999.

[2] J. Theiler, N. R. Harvey, S. P. Brumby, J. J.
Szymanski, S. Alferink, S. J. Perkins, R. Porter, and J. J.
Bloch, Evolving retrieval algorithms with a genetic
programming scheme, Proc. SPIE, Vol. 3753, pp.416-425,
1999.

[3] S. Perkins, J. Theiler, S. P. Brumby, N. R. Harvey,
R. B. Porter, J. J. Szymanski, and J. J. Bloch, GENIE: A
hybrid genetic algorithm for feature classification in
multi-spectral images, Proc. SPIE, Vol. 4120, pp. 52-62,
2000.

[4] N. R. Harvey, J. Theiler, S. P. Brumby, S. Perkins, J.
J. Szymanski, J.J. Bloch, R.B. Porter, M. Galassi, and A.
C. Young, Comparison of GENIE and conventional
supervised classifiers for multispectral image feature
extraction, IEEE Transactions on Geoscience and Remote
Sensing, Vol. 40, pp. 393-404, February 2002.

[5] J. H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan, Ann Arbor, 1975.

[6] I. Rechenberg, Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution, Fromman-Holzboog, Stuttgart, 1973.

[7] L. Fogel, A. Owens and M. Walsh, Artificial
Intelligence through Simulated Evolution, Wiley, New
York, 1966.

[8] J. R. Koza, Genetic Programming: On the
Programming of Computers by Natural Selection, MIT,
Cambridge, 1992.

[9] N. R. Harvey, S. Perkins, S. P. Brumby, J. Theiler,
R. B. Porter, A. C. Young, A. K. Varghese, J .J.
Szymanski, and J. J. Bloch, Finding golf courses: The
ultra high tech approach, Proc. Second European
Workshop on Evolutionary Computation in Image
Analysis and Signal Processing (EvoIASP2000),
Edinburgh, UK, pp. 54-64, 2000.

[10] S. P. Brumby, N. R. Harvey, J. J. Bloch, J. Theiler,
S. Perkins, A. C. Young, and J. J. Szymanski, Evolving
forest fire burn severity classification algorithms for
multi-spectral imagery, Proc. SPIE, Vol. 4381, pp. 236-
245, 2001.

[11] S. P. Brumby, J. Theiler, J. J. Bloch, N. R. Harvey,
S. Perkins, J. J. Szymanski, and A. C. Young, Evolving
land cover classification algorithms for multi-spectral and
multi-temporal imagery, Proc. SPIE, Vol. 4480, pp. 120-
129, 2002.

[12] Catherine  S. Plesko, Steven P. Brumby and Conway
Leovy, Automatic Feature Extraction for Panchromatic
Mars Global Surveyor Mars Orbiter Camera Imagery,
Proc. SPIE, Vol. 4480, pp. 139-146, 2002.

[13] J. A. Richards and X. Jia, Remote Sensing Digital
Image Analysis, 3rd ed., Chapter 13, Springer, Berlin,
1999.

[14] Peter J. Jarecke, Karen E. Yokoyama, Pamela Barry,
On-orbit solar radiometric calibration of the Hyperion
instrument, Proc. SPIE, Vol. 4480, pp. 225-230, 2002.

[15] R. S. Lunetta and C. D. Elvidge (editors), Remote
sensing change detection, Ann Arbor, Chelsea, 1998.

[16] T. Bucher and F. Lehmann, Fusion of HyMap
hyperspectral with HRSC-A multispectral and DEM data
for geoscientific and environmental applications, Proc. of
IGARSS 2000: IEEE 2000 International Geoscience and
Remote Sensing Symposium. Taking the Pulse of the



Planet: The Role of Remote Sensing in Managing the
environment, 2000.

[17] X.M. Zhang, C.J.S. Cassells and J.L. van Genderen,
Multi-sensor data fusion for the detection of underground
coal fires, Geologie en Mijnbouw, Vol.  77, pp. 117–127,
1999.

[18] A.H. Schistad Solberg, T. Taxt and A.K. Jain, A
markov random field model for classification of
multisource satellite imagery, IEEE Transactions on
Geosience and Remote Sensing, Vol. 34, p. 100, 1996.

[19] W. R. Bell and P. G. Weber, Multispectral Thermal
Imager – Overview, Proc. SPIE, Vol.  4381, pp. 173-183,
2001.

[20] M. L. Decker and R. Kay, Multispectral thermal
imager satellite hardware status, tasking, and operations,
Proc. SPIE, Vol. 4381, pp. 184-194, 2001.

[21] J. J. Szymanski, W. Atkins, L. Balick, C. C. Borel,
W. B. Clodius, W. Christensen, A. B. Davis, J. C.
Echohawk, A. Galbraith, K. Hirsch, J. B. Krone, C.
Little,P. Mclachlan, A. Morrison, K. Pollock, P. Pope, C.
Novak, K. Ramsey, E. Riddle, C. Rohde, D. Roussel-
Dupré, B. W. Smith, K. Smith, K. Starkovich, J. Theiler,
and P. G. Weber, MTI Science, Data Products and
Ground Data Processing Overview, Proc SPIE, Vol.
4381, pp. 195-203, 2001.

[22] U.S. Geological Survey Digital Elevation Models:
http://edcwww.cr.usgs.gov/glis/hyper/guide/1_dgr_dem

[23] The ENVI software package is described on the web
site:  http://www.rsinc.com/envi.

[24] S. W. Koch, Ecology Group, Los Alamos National
Laboratory, private communication.


